

Doping effect of Sn on superconductivity of $YBa_2Cu_3O_V$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1992 J. Phys.: Condens. Matter 4 4981

(http://iopscience.iop.org/0953-8984/4/21/013)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 11/05/2010 at 00:15

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 4 (1992) 4981-4987. Printed in the UK

Doping effect of Sn on superconductivity of YBa₂Cu₃O₂

Chen Ang[†], Zhi Yu[†], Li Biao-rong[†], Wang Shao-jie[§] and Chen Yi-Long[§]

† Physics Department, Materials Science and Engineering Department, Zhejiang University, Hangzhou 310027, People's Republic of China

[‡] Solid State Electronics Department, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

§ Physics Department, Wuhan University, Wuhan 430071, People's Republic of China

Received 21 October 1991, in final form 14 February 1992

Abstract. The superconductivity of YBa₂Cu₃O_y ceramics doped with SnO₂ was studied. The superconducting transition temperature T_c was increased slightly as the SnO₂ content changed from 0 to 5 wt%. The results of the Mössbauer effect and the positron annihilation spectra showed that the Sn ions did substitute for Cu(1) sites. The increase in T_c may be attributed to the optimal carrier concentration as well as to the fine and dense microstructure obtained by doping with SnO₂.

1. Introduction

It is commonly recognized that the stable T_c of the YBa₂Cu₃O_y (YBCO) system is 90–95 K [1, 2]. A substitutional study is a meaningful way to obtain information about the electronic and crystal structure of these cuprate oxide superconductors. Much work has been performed on doped YBCO superconductors. Some much higher superconducting transition temperatures T_c were reported [3, 4]. However, most of the superconducting transition temperatures T_c of doped YBCO superconductors were much lower [5, 6]. The present paper reports the doping effect of Sn on the superconductivity of YBCO.

2. Experimental details

The samples were prepared by means of a solid state reaction. The raw materials $BaCO_3$, Y_2O_3 , CuO and SnO_2 powders were weighed according to the nominal stoichiometry of $YBa_2Cu_3O_y + x$ wt% SnO_2 where x was equal to 0.1, 0.2, 0.5, 1, 2 and 5, respectively. The powders were carefully mixed and pre-fired on Al_2O_3 plates at 900 °C for 6 h in air and broken to powders again. The calcination was repeated several times to improve homogeneity. The pre-fired powders were pressed and sintered at 960-1000 °C for 20 h in air and then cooled by controlling carefully in a furnace. The samples were annealed at 500 °C for 24 h in air.

The crystal structure of the samples was studied by x-ray powder diffraction (XRD) at room temperature with Cu K α radiation. Scanning electron microscopy (SEM) was used to analyse the composition of the materials.

The samples with 0.5 wt%, 2 wt% and 5 wt% SnO_2 (80% enriched with ¹¹⁹Sn) were denoted (a), (b) and (c), respectively. The powders were pressed into discs of density 70 mg cm⁻² and mounted on the cold head of a closed-cycle refrigerator (Displex model CS-202) with an accuracy of ±0.1 K. Temperature-dependent Sn Mössbauer spectra of samples (a), (b) and (c), a sample with 5 wt% natural tin (sample (a')) and SnO_2 in the temperature range from 12 to 300 K were recorded using a constant-acceleration spectrometer Oxford MS-500 with transition geometry. The source of 2 mCi CaSnO₃ was kept at room temperature. The data were analysed using the program MOSFUN.

The positron annihilation lifetime spectra of the samples were measured with a fast-slow coincidence system with a time resolution of 220 ps from 60 Co. Each spectrum contained a total of 1×10^6 counts. The lifetime spectra were analysed for three components with a variance of fits less than 1.10 using the computer program POSITRONFIT EXTENDED [7].

The superconducting transition temperatures T_c were measured by a traditional four-probe technique and AC susceptibility method (table 1). The accuracy of the voltmeter is 10^{-8} V. A calibrated Pt resistance thermometer was used to determine the temperature of the sample. The measurement of AC susceptibility was made on a mutual inductance bridge with a sensitivity better than $10^{-2}\mu$ H. A calibrated carbon resistance thermometer and calibrated copper-constantan thermocouple were used to determine the temperature of the sample simultaneously.

Table 1. The superconducting transition temperature T_c and the phases of the YBa₂Cu₃O_y + x wt% SnO₂.

x	T_{c}	Phases present
0	92.0	YBa2Cu3Ov
0.1	92.5	YBa ₂ Cu ₃ O _y
0.2	93.0	YBa ₂ Cu ₃ O _v
0.5	94.0	YBa ₂ Cu ₃ O _v
1	94.5	$YBa_2Cu_3O_{\nu}$, $BaCuO_2$, $BaSnO_3$
2	96.0	YBa ₂ Cu ₃ O _y , BaCuO ₂ , BaSnO ₃
5	96.5	$YBa_2Cu_3O_{\nu}$, $BaCuO_2$, $BaSnO_3$

3. Results and discussion

3.1. Phases and superconductivity

The specimens were very hard and had a metallic lustre appearance. The relative densities of the specimens were high, up to 97.7% of the theoretical density.

The XRD results show that the single '1:2:3' structure is obtained for x < 1 while for $x \ge 1$, extra phases such as BaSnO₃ and BaCuO₂ were found (see table 1). In the dopant range of $0.1 \le x \le 5$, the '1:2:3' phase remains orthorhombic. No obvious variation in the lattice parameter is found. The SEM results indicate that the microstructure becomes fine and dense gradually as the SnO₂ content increases and a few impurities segregate at grain boundaries for $x \ge 1$.

The T_c of samples is improved slightly as the SnO₂ content increases in the range of $0 \le x \le 5$ (see table 1). The superconducting transition is sharp and the transition region is narrow.

3.2. Mössbauer effect

3.2.1. Valence state and location of tin ions in YBCO. The Mössbauer data are shown in table 2. The Mössbauer isomer shifts (relative to SnO_2) for Sn-doped YBCO in table 2 indicate a valence of Sn^{4+} by comparison with that of SnO_2 .

Table 2. Mössbauer parameter isomer shifts (IS), quadrupole splittings (QS) for YBCO samples with various Sn contents: sample (a), 5 wt%; sample (b), 2 wt%; sample (c), 0.5 wt%.

Sample	QS (mm s ⁻¹)	15 (mm s ⁻¹)	<i>x</i> ²
(a)	0.79(2)	0.11(1)	1.13
(b)	0.65(3)	0.07(1)	1.25
(c)	0.52(6)	0.04(2)	1.09
SnO ₂	0.69(3)	0.03(1)	1.01

The radius of Sn^{4+} is 0.69 Å, which is similar to that of Cu^{2+} with a radius of 0.72 Å. From the similarity of the ionic radii and electronegativity of elements, the Sn^{4+} ions were expected to substitute for Cu sites in YBCO [8–12].

3.2.2. Temperature dependent f(T) factor. In the thin-absorber case, where the saturation effect can be neglected, the recoil-free fraction f(T) is proportional to the absorption areas A(T) under the resonance (which can be measured very precisely) and can be expressed as [13]

$$f(T) = CA(T) = \exp\left[-\frac{3E_{\rm R}}{2k_{\rm B}\Theta_{\rm D}}\left(1 + \left(\frac{2T}{\Theta_{\rm D}}\right)^2 \int_0^{\Theta_{\rm D}/T} (\exp x - 1)^{-1} x \,\mathrm{d}x\right)\right]$$
(1)

where $E_{\rm R}$ is the recoil energy, $k_{\rm B}$ is the Boltzmann constant, C is a constant and $\Theta_{\rm D}$ is the Debye temperature. An anomalous narrow drop of 3% near $T_{\rm c}$ in the four samples (a'), (a), (b) and (c) are shown in the curves of the areas A(T) versus temperature in figures 1 and 2. This implies that the phonon softening occurs in this temperature range, which may be a precursor of the onset of superconductivity in YBCO. Similar drops appear at about T = 220 and 200 K, as found also in other experiments [14, 15]. The temperature dependences of A(T) below T = 135 K in figure 2 clearly demonstrate that the softening temperatures are reduced with decreasing Sn content. So the YBCO samples with 5 wt% natural tin (sample (a')) and 5 wt% enriched ¹¹⁹Sn (sample (a)) soften at the same temperature.

The phonon softening in the high- T_c superconductors, as an anomalous diminution of the recoil-free fraction f(T), has been observed in many Mössbauer measurements, but the f(T)-factor decreases in a different way near and below the transition temperature T_c . A sudden drop similar to that obtained in the present work was observed in the ¹⁵¹Eu Mössbauer effect for the Eu-Ba-Cu-O system [8]; in other experiments the f(T)-factor displays a little diminution for $T < T_c$, but no observable narrow drop.

Figure 1. The absorption areas under the Mössbauer resonance curves as a function of temperature for superconductor YBCO samples containing (a) 5 wt% and (b) 2 wt% tin. The arrows indicate the temperature at which A(T) has an anomalous drop. The full curves represent a fit to experimental A(T) using the Debye model provided that the anomalous data points were rejected.

Figure 2. Temperature-dependent absorption areas A(T) over a range from 70 to 135 K for YBCO samples containing 5 wt% natural tin (curve (a')), 5 wt% enriched Sn (curve (a)) 2 wt% enriched Sn (curve (b)) and 0.5 wt% enriched tin (curve (c)). The broken lines indicate the temperature at which A(T) has an anomalous drop.

Figure 3. The positron lifetime as a function of the Sn content of the Sn-doped YBCO in the normal state.

3.2.3. Debye temperature. In the high-temperature limit, equation (1) can be reduced to the form [13]

$$\ln f(T) = \ln C + \ln A(T) = \ln C - (6E_{\rm B}/k_{\rm B}\Theta_{\rm D}^2)T.$$
 (2)

For T > 150 K the temperature-dependent ln A(T) can be well fitted by a straight line, and $\Theta_D = 320 \pm 13$ K and $\Theta_D = 294 \pm 26$ K were obtained for samples (a) and (b) respectively. These values are in good agreement with that obtained by Tan Yuen *et al* [9].

3.3. Positron annihilation spectra

Three positron lifetime components τ_1 , τ_2 and τ_3 were resolved from all the obtained lifetime spectra, where $\tau_1 \simeq 170$ ps, and its intensity $I_1 \simeq 70\%$. The long lifetime τ_3 and its intensities I_3 were found to be about 2 ns and about 1.0%, respectively. The short-lived component τ_1 and the long lifetime component τ_3 are assigned to the positron annihilation in the bulk and that in the source or at surfaces between the grains of ceramics. It has been reported that the intermediate-lived lifetime component τ_2 is sensitive to the electronic structure of the high- T_c oxide superconductors [16]. So the following discussion is focused on this lifetime component.

The intermediate-lived component τ_2 of YBCO doped with SnO₂ is shown in figure 3. The positron lifetime decreased quickly for $0 \le x \le 1$ and then τ_2 increased with increasing x for $x \ge 1$.

From the results of Mössbauer measurements on these samples, it is known that the Sn substituted for Cu sites. Did Sn replace Cu(1) or Cu(2)? Some workers reported that the Sn substituted for Cu(1) rather than Cu(2), especially when the content of Sn was small, while others reported that the Sn might occupy both Cu(1) and Cu(2) sites [8-12].

In the case of Sn doping, the experimental results show that the positron lifetime is closely related to the tin content as in figure 3. For x < 1, τ_2 decreases with increasing x, i.e. the annihilation rate of positron increases. According to the results calculated by Turchi *et al* [17], the positron wavefunction is located in the vicinity of the Cu(1)-O chains and the positron mainly annihilates around the Cu(1)-O chains. The substitution of the higher-valence state Sn⁴⁺ element for Cu(1) sites results in an increase in the overlap of the positron wavefunction with the cloud of core electrons and valence electrons of Sn⁴⁺, i.e. the annihilation rate of the positron is increased. So the positron lifetime τ_2 is decreased for x < 1 as in figure 3. Thus the results of the positron annihilation spectra indicate that the Sn substituted at Cu(1) sites. Further evidence and the detailed analysis will be published elsewhere [14].

The increase in the positron lifetime for $x \ge 1$ can be attributed to the extra phases that appeared. It is obvious that the positron annihilation lifetime is highly sensitive to the substitutional solubility; this result is in good agreement with other experimental data [18].

3.4. Discussion

It has been reported that the superconducting properties are directly affected by the substitution for the Cu element in YBCO compounds. This substitution will suppress the superconductivity [5, 6]. However, in Sn-doped specimens, T_c did not decrease but has been improved a little. This interesting phenomenon is briefly discussed as follows.

It is known that the carrier concentration is closely related to the superconductivity in cuprate oxide superconductors, i.e. there is an optimal value of the carrier concentration which maximizes the T_c of cuprate oxide superconductors [19-22].

Neumeier et al [23] have studied the relation between the superconductivity T_c and the substitution content of the $(Y_{1-x-y} Ca_y)Pr_xBa_2Cu_3O_{6.95}$ system superconductors in detail. The results showed that there was an occurrence of a peak in T_c , when the Ca content y changed, for a fixed Pr content x. Neumeier et al interpreted this as the substitution of Pr and Ca together modifying the carrier density of the samples. They derive an equation which relates T_c to the carrier density. According to this equation, the calculated T_c may be up to 97.1 K. They supposed that, if a tetravalent element with no magnetic moment was used for solid solution substitution for the element of the '1:2:3' phase, T_c may be increased. The present work indicated that T_c has been increased slightly by doping Sn as a substitute for Cu. This result is in agreement with the above view.

Much work has been done to determine whether either Cu(1)-O chains or Cu(2)-O planes play the dominant role in superconductivity in the cuprate oxide superconductors. Now it is thought that the Cu(2)-O planes are responsible for the high- T_c superconductivity. Tokura *et al* [19] and Tranquada *et al* [20] suggested a model in which the Cu(1)-O chains act as an electron reservoir which serves to modify the carrier concentration and T_c . In the present work, Sn substitutes for Cu(1) sites; so it has less influence on the Cu(2)-O planes; however, it makes the carrier concentration optimal and hence T_c is improved.

The calculation results of Mössbauer spectra indicated that the Debye temperature of the sample doped with 5 wt% Sn is higher than that of the sample doped with 2 wt% Sn. On comparison with the T_c data, the conclusion can be drawn that a higher Debye temperature will be favourable.

Softening phenomena near T_c were observed in the temperature-dependent f(T)-factor, and the temperature of phonon softening increased as the amount of Sn substitution increased. This change is in good agreement with the change in superconducting transition temperature T_c of the samples. From the results of the present work and the previous published data, it can be generally believed that the phonon plays an important role in the novel oxide superconductors.

On the other hand, the ceramic sintering mechanism of the materials has been improved by doping with Sn. A fine dense microstructure of the superconductors was obtained, and the weak link between the grains was improved; these contributed to the qualified superconductivity.

4. Conclusion

The superconducting transition temperature T_c of the YBCO system ceramics has been improved slightly by doping with SnO₂. The results on Mössbauer and positron annihilation spectra indicate that Sn⁴⁺ did substitute on Cu(1) sites. On the basis of the experimental results, the slight increase in T_c is attributed to the optimal carrier concentration. In addition to these reasons, the improved microstructure may favour superconductivity in the materials obtained by doping with SnO₂.

References

^[1] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu

C W 1987 Phys. Rev. Lett. 58 908

- [2] Chu C W, Hor P H, Meng R L, Gao L, Huang Z J and Wang Y Q 1987 Phys. Rev. Lett. 58 405
- [3] Ovshinky S R, Yong R T, Allred D D, Demaggio G and Vander Leeden G A 1987 Phys. Rev. Lett. 58 2579 .
- [4] Cai X, Joynt R and Larbaleslier D C 1987 Phys. Rev. Lett. 58 2798
- Tarascon J M, Barboux P, Miceli P F, Greene L H and Hull G W 1988 Phys. Rev. B 37 7458 [5]
- Xiao G, Cieplak M Z, Musser D, Gavrin A, Streitz F H, Chien C L, Rhyne J J and Gotass J A [6] 1988 Nature 332 238
- Kirkegaad P and Eldrup M 1974 Comput. Phys. Commun. 7 401 [7]
- [8] Rongchuan Liu, Zhen Hu, Xin Jin, Huimin Shao, Duiqin Wang, Jiwan Zhao and Yuanfu Hsia 1988 Chinese Phys. Lett. 5 214
- [9] Yuen Tan, Lin C L, Crow J E, Myer G N, Salomon R E and Schlottmann P 1988 Phys. Rev. B 37 3770
- Sharma R P and Prasad K G 1988 Phys. Lett. 128A 217 [10]
- [11] Kuzmann E, Homannay Z, Vertes A, Gal M, Torkos K, Csakvari B, Solymos G K, Horvath G, Bankuti J, Kirschner I and Korecz L 1988 Phys. Rev. B 39 328
- [12] Boolchand P, Enzweiler R N, Zitkovsky I, Wells J and Bresser W 1988 Phys. Rev. B 37 3766
- [13] Srivastava J K, Bhargava S C, Iyengar P K and Thosar B V 1983 Advances in Mössbauer Spectroscopy ed B V Thosar, P K Iyengar, J K Srivastava and S C Bhargava (Amsterdam: Elsevier) p 6
- [14] Chen A, Zhi Y and Wang S J 1992 Phys. Rev. B submitted
- [15] Wang S J, Li X H, Chen Y L, Li S Q, Fong G H, Wang Z, Chen A and Li B R 1989 Phys. Status Solidi a 114 273
- [16] Jean Y C, Wang S J, Nakaanishi H, Hardy W N, Hayden M E, Kieff R F, Meng R L, Hor H P, Huang J Z and Chu C W 1987 Phys. Rev. B 36 3994
- [17] Turchi P A E, Wachs A L, Jean Y C, Howell R H, Wetzler K H and Fluss M J 1989 Physica C 153-5 157
- [18] Chen A and Zhi Y 1992 J. Appl. Phys. at press
- [19] Tokura Y, Torrance J B, Huang T C and Nzzal A I 1988 Phys. Rev. B 38 7156
- [20] Tranquada J M, Heald S M, Moodenbaugh A R and Xu Youwen 1988 Phys. Rev. B 38 8893 [21] Somasundaram P 1990 Appl. Phys. Lett. 65 487
- [22] Shafer M W, Penney T, Olson B L, Greene R L and Koch R H 1989 Phys. Rev. B 39 2814
- [23] Neumeier J J, Bjornholm T, Maple M B and Schuller I K 1989 Phys. Rev. Lett. 63 2516